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ABSTRACT
A year ago, one thousand USD invested in Bitcoin (BTC) alone would have appreciated to 
three thousand five hundred USD. Deep reinforcement learning (DRL) recent outstanding 
performance has opened up the possibilities to predict price fluctuations in changing 
markets and determine effective trading points, making a significant contribution to the 
finance sector. Several DRL methods have been tested in the trading domain. However, 
this research proposes implementing the proximal policy optimisation (PPO) algorithm, 
which has not been integrated into an automated trading system (ATS). Furthermore, 
behavioural biases in human decision-making often cloud one’s judgement to perform 
emotionally. ATS may alleviate these problems by identifying and using the best potential 
strategy for maximising profit over time. Motivated by the factors mentioned, this research 
aims to develop a stable, accurate, and robust automated trading system that implements a 
deep neural network and reinforcement learning to predict price movements to maximise 
investment returns by performing optimal trading points. Experiments and evaluations 
illustrated that this research model has outperformed the baseline buy and hold method 
and exceeded models of other similar works. 
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INTRODUCTION
Cryptocurrencies and cryptocurrency 
trading have significantly succeeded as an 
emerging business and research topic, with a 
noticeable uptick in interest and activity. For 
example, Fang et al. (2022) survey found 
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that there are emergent trading technologies, including machine learning technology and 
other emergent trading methods, portfolio and cryptocurrency assets research, and market 
condition research since 2018. 

There are a few distinct advantages of trading cryptocurrency. For instance, its drastic 
fluctuations, its 24/7 availability thanks to its decentralised market, low transaction costs using 
peer-to-peer transactions, and programmable “smart” capabilities bring benefits to holders.

However, trading activities can be controversial as some people relate them to “legal” 
gambling. However, a good trader looks for consistency, whereas a gambler looks for quick 
profits. Thus, this research aims to investigate a suitable architecture to integrate deep 
reinforcement learning (DRL) into a trading bot. 

The motive of this trading bot is to train a model to learn from carefully selected technical 
indicators to learn to trade for profits consistently and accurately. This research aims to expose 
more people to cryptocurrency applications and provide an option for beginner investors who 
have no prior knowledge of trading but would like to earn passive income. Additionally, this 
research hopes to affiliate with people interested in fintech and would like to explore the 
potential of DRL in trading. 

The reason for undertaking this research includes the lack of a baseline. Despite much 
work and research published on applying DRL to video gameplay and robotics, there is 
relatively little work on applying DRL to financial trading (Li, 2017). No standard baseline 
or publicly acknowledged architecture exists to create the proposed model (Huang, 2018). 
Additionally, this research aims to fill the absence of commercially available products. The 
current commercially available product commonly uses a trading strategy based on technical 
indicators to control the trading points, with no application of artificial intelligence (AI). 

In addition, simple trading systems may be sufficient for capturing recurrent patterns. 
However, they are incompetent for the dynamically random cryptocurrency market as they 
assume a linear relationship with no feedback from the environment. At the same time, 
the cryptocurrency market has many exception values and is largely affected by external 
factors, including political and geographical news. Chaos theory—a conceptual framework 
of nonlinear dynamic systems resolves the unpredictability with distinctive patterns 
(Cartwright, 1991). Neurons in deep learning architecture can exhibit chaotic dynamics; 
hence this research aims to utilise deep learning techniques to reconcile the unpredictability 
of the chaotic trading problems. 

This research also aspires to resolve the human hindrance of being always available. 
Humans have limitations; they cannot focus on the market all the time and always think 
rationally. Although there are automated functions such as grid trading, these functionalities 
are simply fixed positions with no flexibility and AI integrated. Not to mention, humans 
tend to be their own greatest enemy when it comes to financial trading due to emotions. 
For example, humans fear missing trading opportunities during market euphoria and panic 
selling in a market downtrend. 
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LITERATURE REVIEW

Automated Trading System

Automated trading systems (ATS) take past market prices as inputs and generate a trading 
signal suggesting the optimum. In other words, it is a decision-making system where the 
dependability and performance of a system are subjective to the efficiency of big data 
analysis and modelling (Huang et al., 2019).

Many attempts have been made to develop a consistently profitable system in different 
fields ranging from fundamental analysis and econometric modelling of financial markets 
to machine learning (Dempster & Romahi, 2002; Moody et al., 1999). Nonetheless, 
few attempts were successful, and most could not be used to trade actual markets due 
to associated practical disadvantages such as large draw-downs in profits and excessive 
switching behaviour resulting in very high transaction costs (Dempster & Leemans, 2006).

Generally, the main advantages of ATS include (1) emotional trading elimination, (2) 
greater discipline in following strategy rules and more consistent behaviour, (3) virtually 
guaranteed participation in every important trend, and (4) minimised losses. Regardless, the 
known cons of ATS are (1) trend-following systems rely on major trends to be profitable, 
(2) non-trending markets are non-profitable, and (3) unable to recognise that market is not 
trending (Tucnik, 2010). 

Reinforcement Learning

The RL framework includes an agent that optimises its behaviour by interacting with its 
environment. After taking action in some state, the agent receives a scalar reward from 
the environment, indicating the quality of that action. The agent’s main goal is to find a 
policy that maximises the total accumulated reward. By iteratively interacting with the 
environment, the agent uses past experiences to decide on future actions to take in or around 
a certain state (Grondman et al., 2012).

Proximal Policy Optimisation Algorithm

PPO algorithm is a policy optimisation method where the agent directly learns the 
policy function that maps state to action. The policy optimisation approach maintains a 
parameterised action-selection policy. It updates the policy parameters by moving them 
toward an estimate of the gradient of a performance measure (Van Otterlo & Wiering, 
2012). The most commonly used gradient estimator is obtained by differentiating the policy 
gradient objective function in Equation 1:

      [1]
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where  represents the parameter values (weights),  is the policy, and  is an 
estimator of the advantage function at timestep t. 

However, the advantage estimate  uses a value function to estimate how good it is 
for the agent to be in a certain state (Schulman et al., 2015). Since this is only an estimate 
of a neural network, the estimation will be noisy. Thus, multiple optimisation steps based 
on the policy gradient loss often lead to destructively large policy updates (Schulman et 
al., 2017). Furthermore, it will push the policy network into a region of parameter space 
where the subsequent data will be collected under a very poor policy, causing it never to 
recover again.

Therefore, the team of OpenAI designed the PPO algorithm based on the trust region 
policy optimisation (TRPO) to resolve the mentioned issue (Schulman et al., 2017). The 
core idea is to include a constraint directly into the optimisation objective so the updated 
policy does not move too far away from the old policy, sticking close to a region where 
everything works fine. Hence, the objective function for PPO is in Equation 2.

  [2]

 is simply the probability ratio between the updated policy network outputs and the 
old policy network outputs:

       [3]

In Equation 3, when the estimated advantage is positive, the LCLIP function clips the 
r value to limit the effect of gradient update. Similarly, when r goes near 0. Similarly, the 
update will be limited to prevent reducing the action probability to 0. Since the estimated 
advantage is noisy, destroying a policy based on a single estimate is unwise.

To summarise, PPO is a family of policy optimisation methods that use multiple epochs 
of stochastic gradient ascent to perform each policy update. As a result, PPO provides 
stability and reliability and is simple to implement, requiring only a few lines of code 
change to a vanilla policy gradient implementation (Schulman et al., 2017). 

Deep Neural Network

In 1957, Frank Rosenblatt created the perceptron. It is the prototype of the now-known 
neural network (NN) (Rosenblatt, 1958). NN is an ML technique inspired by the human 
brain. It consists of many simple, connected processors called neurons, each producing a 
sequence of real-valued activations. Simply put, NN is nothing more than a certain type 
of nonlinear function (Anthony et al., 1999). 
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A deep neural network (DNN) is a type of NN modelled as a multilayer perceptron 
(MLP). DNN is trained to learn representations from data sets without manual feature 
extractors (Shrestha & Mahmood, 2019). It is used in RL to approximate the value function 
(Li, 2017). It allows RL to be applied in larger problems as the state action pair grows, 
unlike non-deep RL, which requires storing the values via a tabular function. 

Convolutional Neural Network

Convolutional Neural Network (CNN) is used in this research to leverage its ability to 
extract useful knowledge and learn the internal representation of the cryptocurrency market 
data (Livieris et al., 2020). 

CNN is mainly composed of two parts: the convolution layer and the pooling layer. 
Each convolution layer contains a plurality of convolution kernels. The convolution kernel 
(filter) can be considered a tiny window that ‘‘slides’’ all over the input matrix, applying 
convolution operation on each subregion (patch) that this specified window ‘‘meets’’ across 
the input matrix. 

After the convolution operation of the convolution layer, the extracted feature 
dimensions are very high. Therefore, a pooling layer is added after the convolution layer to 
reduce the feature dimension (Lu et al., 2020).  A pooling layer is a subsampling technique 
to extract certain values from the convolved features to produce a lower dimension matrix. 
As a result, the pooling layer produces new matrices, which can be considered summarised 
versions of the convolved features produced by the convolutional layer. The pooling 
operation can help the system to be more robust since small changes in the input will not 
change the pooled output values (Livieris et al., 2020). 

Long Short-Term Memory

Long short-term memory (LSTM) is a network model designed to solve the longstanding 
problems of gradient explosion and gradient disappearance in recurrent neural networks 
(RNN) (Hochreiter & Schmidhuber, 1997). 

The LSTM networks are composed of an input layer, one or more hidden layers, and 
an output layer. Each LSTM memory cell has three main gates (input, output, and forget) 
to maintain and adjust its cell state. The purpose of the forget gates is to provide a way for 
the memory cells to reset themselves, which is proved to be important for tasks that require 
the network to “forget” previous inputs (Graves, 2012). The input gate specifies which 
information is added to the memory (cell state). In contrast, the output gate specifies which 
information from memory (cell state) will be used as output information (Wu et al., 2018).

As CNNs are not usually adapted to manage complex and long temporal dependencies, 
the LSTM network is used in this research to cope with temporal correlations. However, 
simultaneously, CNN exploits features provided in the training set, which LSTM cannot do. 
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Therefore, a time-series model which exploits the benefits of both deep learning techniques 
could improve the prediction performance (Livieris et al., 2020). 

Related Works

Several past works have implemented DRL into an ATS. All the results have proven that 
DRL techniques can outperform baseline methods in the stock market or cryptocurrency 
market. However, none of the mentioned works implemented a CNN-LSTM in their model. 
In contrast, this research leverages CNN’s high sensitivity to undergo feature extraction 
from the historical data and technical indicators of the crypto market and LSTM time delay 
characteristics to build a robust and consistent trading bot. 

Sattarov et al. (2020) developed a cryptocurrency trading points recommending system 
using DRL. Their experimental results on the BTC historical prices are positive, with a 
74.6% profit within a month (19 March 2019 to 21 April 2019). However, the trend in that 
month is generally trending upwards. At the same time, this research will be evaluated in a 
complete business cycle, where a specific downtrend period is included to ensure fairness 
and truly evaluate the robustness and stability of the model. 

Li et al. (2019) implemented the deep Q-network (DQN) and the asynchronous 
advantage actor-critic (A3C) as their DRL algorithm to autonomously make trading 
decisions and gain profits in the dynamic financial markets. They also used an LSTM 
model as a part of the function approximator. As expected, the A3C outperformed the DQN 
algorithm as it is too complex to learn the Q function with a value-based algorithm. On the 
other hand, the policy-based algorithm can learn a good policy since it directly operates in 
the policy space. Therefore, this research implemented the policy-based PPO algorithm. 

Xiong et al. (2018) also implemented a Deep Deterministic Policy Gradient (DDPG) 
to find the best trading strategy in the dynamic stock market. The results show the DDPG 
algorithm to achieve a higher return than the traditional min-variance portfolio allocation 
method and the Dow Jones Industrial Average (DJIA), with an annualised return of 22.24%. 
The model also achieved a much higher Sharpe ratio indicating it is more robust than the 
others in balancing risk and return. Nonetheless, there is no mention of data transformation. 
Cryptocurrencies as an activity in a payment system are influenced by seasonal effects 
(Haferkorn & Diaz, 2014). Thus, this research implemented differencing techniques to 
remove seasonality from the historical prices dataset. Furthermore, technical indicators 
are introduced into the dataset to capture different types of information about the market. 
It is proven that combining information from technical indicators and macroeconomic 
variables produces superior forecasts to better track the market’s substantial countercyclical 
fluctuations (Neely et al., 2014).

Lucarelli and Borrotti (2019) made a comparison of Double Deep Q-Network 
(D-DQN), Dueling Double Deep Q-Network (DD-DQN) and DQN in implementing a BTC 
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ATS. Their proposed system has an intact stop-loss and take-profit strategy applied upon 
a certain threshold. Besides, each model is built with two different settings: profit reward 
function and Sharpe ratio reward function. Their Sharpe D-DQN model shows the best 
result with an average return of 5.81% and a maximum return of 26.14% from 1 December 
2014 to 27 June 2018. Nevertheless, the fact that the model is trained in the 1-minute 
interval may not be practical for real-time trading as the markets are too volatile, and the 
model may not be able to consider time delays. Besides, the function implemented was 
the standard mean squared error (MSE) loss function, which, as mentioned, might cause 
large inaccurate updates to the model due to the noisy value function, which is a serious 
issue in RL as updates are carried out iteratively. Unlike the PPO algorithm, which clips 
the estimated loss, the model is updated in a trusted, safe region.

As of the writing of this journal, there has yet to be the implementation of deep 
reinforcement learning, especially with the PPO algorithm for trading the cryptocurrency 
market. Besides, using two different deep learning models is also an upcoming noteworthy 
area of research. It has not been thoroughly configured to be applied in predicting 
trading signals in the cryptocurrency markets. This research aims to revolutionise the 
implementation of deep reinforcement learning on fintech domains, as well as showcase 
the outstanding trading performance of deep reinforcement learning in trading problems.

METHODS

Research Methodology

There are four main stages conducted in this research. The first stage is the data acquisition 
from Binance exchange REST API v3. The second stage is the data transformation applied 
to the dataset before training. Technical indicators and differences, as well as normalisation 
techniques, are applied to transform the input data. The third stage is the model’s training, 
where RL and DNN architecture is used to update the policy network. The fourth stage is 
where evaluation analysis is conducted on the trained model to evaluate the accuracy and 
robustness of the model.

Dataset Interpretation

The dataset of historical k-line is obtained from Binance exchange REST API. The 
obtained dataset is separated into market cycles, as seen in Figure 1, for training and testing 
purposes and to allow the model to identify the market cycle phase in different timesteps. 
It is important to split the training and testing dataset. Just because a model performs well 
on its training data does not mean it will perform well on data it has never seen, and what 
matters in this study is that the model can predict in real-time unseen data. (Chollet, 2017). 
The dataset is first split on Bitcoin’s halving date (11 May 2020). Cycles 1 and 2 will be 
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used to train the model, whereas cycle 3 is the testing dataset. The imbalanced ratio (70/30) 
ensures the model has enough training dataset to learn for an effective mapping of inputs 
to outputs. As there is no limitation for setting a splitting ratio, 70/30 is a common dataset 
splitting proportion. Nonetheless, the optimal splitting ratio varies on the characteristics 
of different datasets (Vrigazova, 2021).

Figure 1. Splitting training and testing dataset

Technical Indicators

Technical indicators are included in the dataset to capture various market information 
and reduce the noise of the volatile cryptocurrency markets. The chosen technical 
indicators are true average range (volatility indicator), relative strength index (momentum 
indicator), and Chaikin money flow indicator (volume indicator). It shall be observed that 
different categories of technical indicators are used. It improves the model by minimising 
highly correlated dataset features, as high feature correlation increases redundancy in 
representations, which is undesirable (Zhang et al., 2018). Furthermore, correlated features 
add noise and redundancy to the model, making knowledge discovery during the training 
phase more difficult (Kotsiantis et al., 2006). 

These indicators are also chosen because their values are in a limited range. For 
example, the relative strength index ranges from 0 to 100, and the Chaikin money flow 
indicator has a zero-centred value. If other indicators were to be used, such as Bollinger 
Bands, the values are highly dependent on seasonal variations. As PPO uses experience 
replay to train the model at the end of each episode, having time-dependent values will 
introduce bias to certain states; as the model goes into implementation, it might not be able 
to perform well as it does not recognise the values anymore as time changes. For example, 



2691Pertanika J. Sci. & Technol. 30 (4): 2683 - 2705 (2022)

Automated Cryptocurrency Trading Bot Implementing DRL

it would be hard for the model to predict a downtrend if it was learned on uptrend data 
while training.

Data Pre-Processing

In practice, it is nearly always advantageous to apply pre-processing transformations to the 
input data before it is presented to a network (Bishop, 1995). As stated, time-series data is 
not stationary, as the model also uses the historical close prices to act as a trend indicator; 
the data needs to be processed.

The first stage in any analysis should be to see if there is any indication of a trend or 
seasonal impacts, and if so, remove them. Therefore, the data fed to the stationary model 
are a realisation of a stationary process (Cowpertwait & Metcalfe, 2009). Figures 2 and 3 
show the difference before and after processing the closing data prices. Before normalising 
the data, a technique known as differencing is applied. Differencing can help stabilise the 
mean of the time series by removing changes in the level of a time series and eliminating 
or reducing trend and seasonality (Hyndman & Athanasopoulos, 2018). 

Figure 3. Data after differencing

Figure 2. Data before differencing
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After applying differencing to the closing data prices, all the feature data, including the 
technical indicators, are normalised. Research has found that input data normalisation prior 
to training is crucial to obtaining good results and significantly fastening the calculations 
(Sola & Sevilla, 1997).

Reinforcement Learning

PPO is chosen as the RL algorithm due to a few factors. Firstly, it must be a model-free 
algorithm. It is due to the volatility of the crypto market, where the prices are extremely 
dynamic, and short-term decline can happen unexpectedly. Implementing the model-free 
approach allows the agent in this research to rapidly adapt when the environment changes 
its way of reacting to the agent’s actions. 

Furthermore, PPO uses the actor-critic framework. Typically, RL methods fall under 
two categories: policy-based (actor) or value-based (critic). Actor-critic methods combine 
the best of both worlds. The critic uses an approximation architecture to learn a value 
function, which is then used to update the actor’s policy parameters in the direction of 
performance improvement. As a result, it reduces the high variance of the policy networks, 
resulting in a more robust model. Additionally, actor-critic methods promise variance 
reduction, thus resulting in faster convergence (Konda & Tsitsiklis, 1999). 

As the trading environment is a continuous state-action space, the actor can produce 
continuous actions without optimisation procedures on a value function because the critic 
is there to evaluate the current actor’s policy by approximating and updating the value 
function using samples, which also speeds up the learning process (Grondman et al., 2012). 
As a result, the updated policy analyses how good the action is and how much better it 
could be. Hence, the stability provided by the characteristics of the actor-critic framework 
makes it a great model for the financial trading environment (Yang, 2020).

Keeping in mind that this research aims to build a stable and robust training bot, 
PPO is a good fit to adapt to a trading strategy that incurs the most profit in the long term 
instead of an unsustainable strategy that only works for a rapid gain. Generally, PPO 
is a simple to implement yet reliable RL algorithm; thus, it is a competent algorithm 
to start for an automated trading domain (Schulman et al., 2017). Additionally, the RL 
trading environment simulation improves the agent’s generalisation and robustness to the 
environment’s changes (Ganesh et al., 2019). A good, simulated environment provides a 
high degree of reduction to simulate multiple policies for evaluation and improvement, 
including various cases such as the different phases of market cycles (Zhang, 2021).

Given the cryptocurrency market domain, the RL environment is custom-built to adapt 
to the cryptocurrency market domain. This RL environment trains the agent through positive 
reinforcement by interacting with the environment. Essentially, the agent conducts “trial 
and error” to maximise its reward (Kolm & Ritter, 2019). The agent will be interacting 
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with the environment using state space, action space and reward functions that are 
specifically designed. The state-space specifies the observations the agent receives from 
the environment. The action space specifies the possible interactions between the agent 
and the environment. Finally, the reward function incentivises to drive the agent to learn 
a better action (Liu et al., 2020). 

Table 1
Example of input states to model at each step. Each state has 100 hours of market information containing the 
closing price and three different technical indicators

Timestamp Closing
price

Relative strength 
index indicator

Normalised average 
true range indicator

On-balance volume 
indicator

1502942400 4261.32 49.48 1.42 -0.14
1502946000 4291.37 51.89 1.46 -0.07
1502949600 4309.37 56.01 1.48 0.01

… … … … …
1503302400 4036.3 48.80 1.33 -0.02

As shown in Table 1, with each step, the states are a lookback window of 100 hours 
consisting of the market information, including the technical indicator. The technical 
indicators are derived from the unprocessed dataset’s open, high, low, close, and volume 
(OHLCV). In other words, the model will predict the action based on the 100 hours of 
information generated by the environment at each step.

Table 2
Possible agent actions as predicted by the model

Actions Effect
Buy Buy crypto assets at current price with all the current net worth. Deduct net worth and add 

holding crypto amount.
Hold Do nothing.
Sell Sell all crypto assets. Deduct holding crypto amount and add net worth.

As depicted in Table 2, the possible actions by the agent are buying, holding, or selling. 
In the RL environment, there is a “net worth” variable that keeps track of the agent’s 
current net worth and another “crypto holding” variable that keeps track of the agent’s 
current holding amount of crypto assets. To simulate a real trading environment, the agent 
will perform a “buy” action each time the model predicts a buying signal. As a result, the 
environment will deduct the “net worth” variable and add the amount of crypto bought to 
the “crypto holding” variable.  The amount bought is calculated by Equation 4.

   [4]
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If the predicted action is held, the agent will not do anything. Whereas, if the predicted 
action is sold, the environment will now deduct all the current amount of the “crypto 
holding” variable and adds the equivalent amount of money to the “net worth” variable, 
which can be calculated by Equation 5.

 [5]

After taking action, the reward for the predicted action is computed using the formula 
in Equation 6.

   [6]

For instance, if the agent’s selling action results in a smaller net worth value than its 
previous net worth, the reward will be negative, incurring a penalty to the model. On the 
contrary, if the action taken results in a greater net worth value than its previous net worth, 
the reward will be a positive value. As the model training aims to increase the agent’s net 
worth, this reward system will drive the model to learn by attempting to maximise the 
reward and avoid negative rewards.

Figure 4 depicts the model’s flowchart of the training and predicting process. As 
the actor-critic framework is implemented, the flowchart shows how the critic model is 

Figure 4. Flowchart of training and predicting process
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responsible for predicting the discounted rewards, which will be used to calculate the 
estimated advantage. The estimated advantage is then used to train the actor and critic 
models. 

Figure 5 depicts the pseudocode for how RL model training is conducted. The 
environment is reset for each training batch, and the trajectories of the end of each training 
batch are collected. The collected trajectories are used to compute the estimated advantage 
and update the policy by training the actor and critic models. 

Figure 6 illustrates how RL is integrated with deep learning architecture. The RL 
environment passes the states and generates the rewards for the deep learning model, and 
the deep learning model will return predicted action onto the RL environment. In addition, 
the model loss will be clipped by the PPO loss function to restrict the weight updates 
during model training.

for i = 1, 2, ..., training episodes do
 Environment reset
 for j = 1, 2, ..., training batch size do
  Collect trajectories by running old policy in environment
 end for
 Compute estimated advantage
 Update policy
end for

Figure 5. Pseudocode for model training

Figure 6. Integration of reinforcement learning and deep learning

Deep Learning Architecture

The CNN-LSTM architecture in this research is designed as shown in Figure 7. As CNNs 
are not usually adapted to manage complex and long temporal dependencies, the LSTM 
network is used in this research to cope with temporal correlations. Furthermore, CNN 
is paying attention to the most obvious features in the line of sight, so it is used in this 
model to perform feature engineering. Along with its convolutional and pooling layers, it 
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can filter the input data and extract useful information as an input, enhancing the model’s 
performance (Livieris et al., 2020). Aside from feature engineering, CNN is also superior 
in its ability to deliberate the relationship between the extracted features and hence perform 
classification (Liao et al., 2017). Hence, CNN is popular in applications such as image 
analysis and financial time-series prediction.

Figure 7. Actor deep learning model architecture
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However, CNN is a highly sensitive model as even small translations or rescaling of 
the input data can drastically change the network’s prediction (Azulay & Weiss, 2018). 
However, it might introduce large variance into the function approximator, causing major 
updates to the policy network due to the noisy value function. By integrating LSTM with 
CNN, LSTM can tone down the high sensitivity of CNN by introducing a delay into the 
model. In addition, LSTM allows the model to be more stable by considering past market 
information with its long memory by storing the information in its cell state as compared to 
shorter memory RNN. It allows the model to avoid pitfalls such as a sudden market spike.

The research uses transfer learning to overcome the problem of hard-to-train financial 
data due to high volatility and insufficient data (Jeong & Kim, 2019). However, this learning 
approach is not implemented in this research as it may hurt the learning performance in 
the target domain, a situation often referred to as negative transfer (Pan & Yang, 2009). 
Furthermore, it prevents the pre-trained model from introducing additional bias into the 
model, causing the learning process to side-track, especially when BTC holds unique market 
characteristics due to extreme price movements. Not to mention that investors’ attention 
to the crypto market drastically changed over time (Gronwald, 2014).

The main parameter involved in this proposed model is its weights, which will be 
optimised through iterative updates during experience replay in the training process. 
Furthermore, the proposed model integrates with RL to perform optimal weight updating 
based on the stable PPO loss function instead of the conventional noisy estimated value 
function.
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Evaluation Metric

The evaluation metric is important for discriminating and obtaining the optimal model 
architecture (Hossin & Sulaiman, 2015). The performance of the proposed model will 
be evaluated against the baseline buy-and-hold method. The single-period rate of return 
of the proposed method and the buy and hold method will be compared to determine the 
profitability of the trained model. Additionally, the model’s accuracy will be determined 
to assess the correctness of the model’s trading decision. Finally, the model will be tested 
on unseen data to determine the system’s performance and ensure fairness against the 
buy-and-hold method. 

RESULTS AND DISCUSSIONS

Training Process

The training process will take in the pre-processed training dataset containing two market 
cycles; as mentioned, the model will interact with input states and react by acting on the 
predicted action. Therefore, a successful training process for this experiment will decrease 
model loss and increase net worth. Normally, the model loss will be high initially as the 
actions predicted are inconsistent with the target output but should decrease in time as the 
model learns to predict actions based on input states. As a result, the model is expected to 
yield an increase in net worth from generating accurate trading signals. 

The model loss, net worth, and order per episode are recorded to visualise the training 
process better. The training process took approximately 100 hours to complete 4000 
training episodes. Each episode is made up of 1000-time steps. The training parameters 
for model training in each episode are five epochs with a batch size of 32. In other words, 
the model will go over each episode five times, where the model will update its weight 
parameters every 32 batches. As observed in Figure 8, the model can learn as the loss per 
replay decreases. 

Figure 8. Actor loss per replay
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As a result, the model has proven its ability to perform profitable trades as its net worth 
increases as more training episodes continue, as shown in Figure 9. Notably, the model 
also learned to perform more trading orders per episode, as illustrated in Figure 10, which 
is believed to reflect how it can achieve more profits.

Figure 10. Orders made per episode

Figure 9. Net worth per episode

Evaluation and Findings

Model Accuracy. The trained model is tested with an unseen dataset with 436 days, ranging 
from 10 May 2020 to 20 July 2021 for all the cryptocurrencies, except for DOT, as it was 
only launched on 18 August 2020. Table 3 shows the model’s performance, including the 
number of trades, number of profitable trades, accuracy, total return rate given the time, 
and annualised return.  The model has proved its capability to make profitable trades. 

The model’s accuracy is evaluated by the number of profitable trades made over the 
total number of trades made. A trade is considered profitable if the current selling price of 
the trade is higher than the previous buying price. As the model is initially trained using 
BTC historical dataset, the accuracy for BTC is the highest among the 10 cryptocurrencies. 
Nonetheless, the model can perform well with all the cryptocurrencies with high accuracy. 
Although, this may be due to the nature of cryptocurrencies generally trending upwards.
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The performance of the baseline buys and hold method is shown in Table 4. As 
compared to the baseline buy and hold method on BTCUSDT, a trader would have acquired 
a total return rate of 258.64%. Therefore, the model has significantly outshone the baseline 
method and outperformed previous researchers’ models. This evaluation result also 
substantiates humans’ significant limitations of not always being able to trade and missing 
out on trading opportunities without an ATS. 

Table 5 shows the historical annualised 
return of BTC from 2017 to 2021. Despite 
having an exceptionally high return rate, the 
trained model can outmatch the performance 
of the baseline buy and hold method of all 
historical annualised returns of BTC with 
an annualised return of 10395.64% on the 
testing dataset.

Table 5
Historical annualised return of BTC with baseline 
buy and hold method

Year Annualised Return
2017 1331%
2018 -73%
2019 95%
2020 301%
2021 58%

Model Performance on Market Downtrend

To evaluate the performance of the model in a market downtrend, the model is tested on the 
date ranging from 9 May 2021 to 19 July 2021 as seen in Figure 11. The evaluation results 
are depicted in Table 6. Despite the falling prices, the model can trade with outstanding 
results. The accuracy for trading BTC is once again the highest, with 88.79%. It showcased 
the model’s adaptability in different market conditions. 

Figure 11. Downtrend in 2021 market cycle
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Table 6 
Model performance on a market downtrend

 ADA BCH BNB BTC DOT
Trades 83 66 86 107 41
Profitable trades 58 50 57 95 20
Accuracy 69.88% 75.76% 66.28% 88.79% 48.78%
Total return rate 147.14% 329.53% 324.93% 316.64% 7.30%
Annualised return 13937.88% 287727.96% 271293.66% 243593.93% 46.95%

 ETH LINK LTC XLM XRP
Trades 90 64 76 77 67
Profitable trades 76 44 44 60 34
Accuracy 84.44% 68.75% 57.89% 77.92% 50.75%
Total return rate 410.91% 266.72% 67.73% 142.45% -37.47%
Annualised return 742776.57% 121225.78% 1588.02% 12543.58% -92.31%

However, the results of trading DOTUSDT and XRPUSDT were not as good as others. 
It may be due to the model’s inability to adapt to the different market characteristics 
compared to BTCUSDT. As a result, its low accuracy causes it to predict an incorrect 
action, getting caught in a market down spike. Table 7 shows the total return rate of the 
baseline buy and hold method; all the crypto pairings result in negative results. Comparably, 
implementing the baseline buy and hold method for XRPUSDT would have lost -63.04%, 
while the model was able to cut loss to -37.47%. In conclusion, the proposed model is 
appropriately evaluated and accepted as effective. 

Table 7
Baseline buy-and-hold method performance on a market downtrend

 ADA BCH BNB BTC DOT
Total return rate -26.87% -68.91% -53..17% -46.00% -68.78%

 ETH LINK LTC XLM XRP
Total return rate -50.85% -68.13% -65.86% -62.93% -63.04%

CONCLUSION AND RECOMMENDATIONS

This research proposes a new automated cryptocurrency trading system integrated with 
DRL. This research has perfectly demonstrated its capability to resolve the stated problem 
statement – overcoming human hindrance and bridging the gap between human and 
automated trading. The goal of presenting the concept and use of cryptocurrencies to all 
audiences and utilising the power of machine learning to earn profits has been accomplished. 
With that said, the experimental analysis of the model manifested exceptional results, even 
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surpassing similar works by other researchers, thus again fortifying the implementation 
of DRL in the finance sector. 

Undeniably, there are underlying limitations in this research. Different training 
parameters have not been explored since the time constraint arises from hardware 
constraints. In the future, this work hopes to explore different architecture to induce a 
comparison, thus reaching a consensus on the best-performing architecture. Furthermore, 
the input data features can be further improved, and different technical indicators can 
be tested. Correlation analysis such as the Pearson correlation coefficient can be further 
conducted to drop correlated features to achieve optimal noise reduction (Benesty et al., 
2009). To effectively address each cryptocurrency’s market behaviour, models should 
also be trained on each cryptocurrency’s historical data to attain even greater accuracy 
and adaptability. 
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